[文章编号] 1007-3949(2016)24-08-0769-05

・实验研究・

胆酸通过上调 miR-23b-3p 抑制载脂蛋白 A 表达

田永凤^{1,2},莫学靓²,雷建军²,刘亚密²,白洁³,王佐²

(1.山东省临沂市妇女儿童医院病理科,山东省临沂市 276000; 2.南华大学心血管疾病研究所 动脉硬化学 湖南省重点实验室.3.南华大学附属第一医院功能科,湖南省衡阳市 421001)

[关键词] 胆酸; 载脂蛋白 A; HepG2 细胞; miR-23b-3p

[摘 要] 目的 分析胆酸降载脂蛋白 A(ApoA)效应与 miR-23b-3p 的关系,研究胆酸降 ApoA 作用新机制。方法 首先用生物信息学在线工具对 miR-23b-3p 与调控 LPA 基因的转录因子肝细胞核因子 4γ(HNF4γ)进行靶基因分析,使用荧光素酶报告系统对 miR-23b-3p 与调控 LPA 基因的转录因子 HNF4γ 进行靶基因验证实验,Western blot 检测 ApoA 表达水平、p38MAPK(MAPK:丝裂原活化蛋白激酶)及 p-p38MAPK,实时定量 PCR 检测 miR-23b-3p 表达水平。结果 生物信息学分析表明 HNF4γ 可作为 miR-23b-3p 的靶基因,荧光素酶报告系统转染 miR-23b-3p 处理组细胞裂解后荧光强度显著低于对照组,验证了 HNF4γ 可作为 miR-23b-3p 的靶基因。胆酸呈剂量和时间依赖性抑制 HepG2 细胞 ApoA 的表达,以 32 mg/L 和 24 h 的作用最显著。胆酸抑制 ApoA 表达为平;胆酸降 ApoA 与上调 miR-23b-3p 有关。

[中图分类号] R363 [文献标识码]

Bile Acid Inhibits Apolipoprotein A Expression in HepG2 Cells by Up-regulation of miR-23b-3p

A

TIAN Yong-Feng^{1,2}, MO Xue-Liang², LEI Jian-Jun², LIU Ya-Mi², BAI Jie³, and WANG Zuo²

(1.Department of Pathology, Linyi Women and Children Hospital, Linyi, Shandong 276000, China; 2. Institute of Cardiovascular Diseases & Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, Hunan 421001, China; 3. Department of Function, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China)

[KEY WORDS] Bile Acid; Apolipoprotein A; HepG2 Cell; miR-23b-3p

[**ABSTRACT**] **Aim** To analyze the relationship between the effect of bile acid reducing the level of apolipoprotein A (ApoA) and the expression of miR-23b-3p, and to find new mechanisms of bile acid reducing the level of ApoA.

Methods The target genes of miR-23b-3p and transcription factor hepatocyte nuclear factor 4γ (HNF4 γ) regulating the LPA gene were analyzed by bioinformatics online tools Targetscan 7.0. Luciferase reporter assay was used to test target gene relationship for miR-23b-3p. Protein expression of ApoA, mitogen-activated protein kinase (p38MAPK) and pp38MAPK were detected by Western blot in HepG2 cells, and miR-23b-3p expression was measured by real-time quantitative polymerase chain reaction. **Results** Bioinformatics analysis indicated that HNF4 γ could act as a target gene of miR23b-3p. The fluorescent intensity of miR-23b-3p transfection cells was significantly lower than that of control group by using luciferase report assay, and it meant that HNF4 γ could act as a target gene of miR23b-3p. Bile acid restrained ApoA expression in HepG2 cells in a dose- and time-dependent manner, and 32 mg/L and 24 h were the best action dose and time. Bile acid restraining the ApoA expression was related to the activation of MAPK and the up-regulation of miR-23b-3p. Moreover, it could regulate the expressions of miR-23b-3p, farnesyl X receptor and MAPK. **Conclusion** Bile acid can significantly down-regulate ApoA expression in HepG2 cells by a dose- and time-dependent manner, its mech-

[收稿日期] 2015-10-28

[修回日期] 2015-12-26

[基金项目] 国家自然科学基金项目(81070221);湖南省卫生厅课题(B2013-034)

[作者简介] 田永凤,硕士,主治医师,研究方向为心血管病学,E-mail为tianyongfengxw@126.com。莫学靓,硕士,主治医师, 研究方向为脑血管病学,E-mail为178850704@qq.com。通讯作者王佐,博士,教授,研究方向为动脉粥样硬化发病机制与防治,E-mail为smt121101@163.com。

anism is related to up-regulating the expression of miR-23b-3p.

脂蛋白(a) [lipoprotein(a), Lp(a)] 由载脂蛋 白 A(apolipoprotein A, ApoA)和 ApoB100 经二硫键 连接而成。血浆中 Lp(a)的浓度变化很大,这种差 异主要是由 LPA 基因本身所决定^[1]。高水平 Lp (a)被认为是动脉粥样硬化的独立危险因子。大量 研究表明,Lp(a)水平主要受LPA 基因控制,药物和 食物对其作用不大,目前尚无理想的降低 Lp(a)浓 度的药物。故促进了从基因调控入手研究降 Lp(a) 的基因手段的出现,如 Mipomersen 反义核苷酸^[2]和 RNAi 技术^[3]。但由于反义核苷酸和 shRNA 都是外 源性的,其安全性无法保证,寻找内源性的调控 LPA 基因的微小 RNA(microRNA,miR)更具价值。 前期研究发现 miR-23b-3p 能下调 ApoA 的表达,故 本研究拟分析 miR-23b-3p 针对调控 LPA 基因表达 的肝细胞核因子 4γ(hepatocyte nuclear factor 4γ, HNF4y)进行靶基因分析,然后分析胆酸调控 ApoA 表达与法尼基衍生物 X 受体 (farmesyl X receptor, FXR)和miR-23b-3p的关系,及其与丝裂原活化蛋 白激酶(mitogen-activated protein kinase, MAPK)的 关系,发现胆酸调控 ApoA 表达的新途径。

1 材料与方法

1.1 材料和试剂

HepG2 细胞购自上海复旦大学生命科学学院; 胎牛血清购自杭州四季青生物公司,甘氨酸、Trisbase、SDS、Tween-20 和 DEPC 购自美国 Amersco 公 司,羊抗人 ApoA 一抗购自 Abnova 公司,BCA 蛋白 含量测定试剂、HRP 标记链霉亲和素、小鼠抗人 βactin 一抗购自北京康为世纪生物科技有限公司, HRP 标记山羊抗小鼠 IgG(H+L)、ECL Plus 化学发 光试剂盒购自碧云天生物技术研究所,miRNA 模拟 物由广州市锐博生物科技有限公司合成,PCR SuperMix 购自 Invitrogen 公司,pGL4 质粒、双荧光酶报 告基 因检测试剂盒 购自 Promega 公司;X-treme GENE HP DNA 转染试剂购自 Roche 公司,胆酸购 自美国 CA 公司,FXR 拮抗剂 GS 购自 Calbiochem 公 司。其他试剂均为进口或国产分析纯。

1.2 Targetscan 预测以 HNF4γ 为靶基因的 miR

进入 http://www.targetscan.org/, 根据提示操作,实现对以 HNF4γ 为靶基因的 miR 的预测。

1.3 靶基因验证实验

根据 HNF4γ mRNA 3'-UTR 序列中 miR-23b-3p

作用靶点设计引物,使产物包含该靶点序列。正向 引物:5'-TGGACGGGAGACAGAGTGAAGCAT-3',反 向引物:5'-GGCATAGCTGGTAGCTGGGAACA-3',产 物长度 123 bp。以逆转录所得 cDNA 为模板进行 PCR 扩增目的片段,反应条件:预变性 94℃ 5 min, 循环:94℃ 30 s,55℃ 30 s,72℃ 30 s,35 个循环,最 后延伸 72℃ 5 min。2% 琼脂糖凝胶电泳检测 PCR 结果。回收目的 DNA 片段并纯化。Fse I 和 1 µL Xba I 双酶切。用 Promega 快速连接系统将纯化的 PCR 扩增片段与 pGL3 载体连接。质粒抽提,转染。 转染48h后,弃去培养基,加入PBS洗3遍,除去 PBS。加入100 µL 细胞裂解液充分裂解后,加入萤 光素酶检测试剂Ⅱ产生萤火虫萤光信号,测量萤火 虫萤光素酶报告基因。定量萤火虫萤光强度之后, 再加入 Stop & Glo ® 试剂,将上述反应猝灭,并同时 启动萤光素酶反应,进行第2次测量。

1.4 Western blot

将所提取蛋白 12000 r/min 离心 5 min 后上样, 总蛋白上样量为 40 µg。80 V 电泳 30 min 后转为 150 V 电泳 90 min。卸开制胶玻璃板,将 SDS-PAGE 转入转膜液中浸泡 15 min。将二氟化树脂(polyvinylidene fluoride, PVDF) 膜于甲醇中浸泡 15 s, 转入 去离子水中慢摇浸泡2min,再转入转膜液中浸泡5 min。300 mA 恒流转移 4 h, 冰水浴, 中途更换冰袋。 到时间后.用塑料镊子将 PVDF 膜转至去离子水中 清洗30s后转入甲醇中浸泡15s,再将PVDF膜移 至干净滤纸上,晾干 15~20 min。PVDF 膜完全晾干 后(由半透明变为不透明),移至甲醇浸泡15s,去 离子水浸泡清洗 30 s, 丽春红染色 1 min 后, 去离子 水清洗检查转膜效果。然后 PBS 清洗 5 min, 重复 2 次,去除丽春红。1%牛血清白蛋白封闭液室温封闭 2h,用 PBS 稀释一抗,稀释度为1:4000,室温孵育 2 h。PBS 清洗 PVDF 膜 10 min, 重复 3 次。用 PBS 稀释二抗,稀释度1:5000,室温孵育1h。PBS 清 洗 PVDF 膜 10 min, 重复 3 次。去除 PVDF 膜上 PBS, 滴加足量 ECL Plus, 解育 1 min 后, 盖上透明塑 料膜,放上胶片,曝光适当时间。将胶片移入显影 液中,待显出明显条带,转入定影液中定影。

1.5 实时定量 PCR 检测 miR-23b-3p 表达

总 RNA 的提取按照说明书操作,将冰冻细胞溶 解在 700 mL 的 Qiazol 试剂中,用 miR Neasy 试剂盒 提取总的小分子 RNA。然后将 RNA 样本储存在 -80℃中。miR 反转录使用 TaqMans microRNA 逆转 录试剂盒(应用生物技术公司,美国),PCR 反应使用 Taq-Mans Universal PCR Master Mix system 逆转录试剂盒(应用生物技术公司,美国)。50 ng 小RNA 转换为互补的 DNA,加入 miR 引物,miR 的转录水平通过与内参 U6B 比较得到其相对含量,每个样本按照上述重复 3 次。

1.6 统计学分析

实验所得数据采用 $\bar{x}\pm s$ 表示,采用标准差分析 和 t检验的统计学方法,用 Graphpad Prism 5.0.1 对 数据进行分析和作图,选取 95%可信区间,P<0.05为差异有显著性。

2 结 果

2.1 Targetscan 预测以 HNF4γ 为靶基因的 miR

进入 http://www.targetscan.org/,点击 "Submit"。在新的页面中点击"HNF4G(即 HNF4γ)",获得图1,明显可见在HNF4G的3'-UTR 有miR-23b-3p的结合位点,且其结合的自由能很低,仅为-23.5 kCal/mol,远低于参考标准值-10 kCal/mol,表明二者之间有稳定的结合。

图 1. Targetscan 预测以 HNF4γ为靶基因的 miR Figure 1. Targetscan prediction to HNF4γ as miR target gene

2.2 靶基因验证实验

pGL4+HNF4γ mRNA 3'-UTR+miR-23b-3p 模拟 物组荧光强度显著低于 pGL4+HNF4γ mRNA 3'-UTR 组, pGL4+HNF4γ mRNA 3'-UTR+miR-23b-3p 模拟物+miR-23b-3p 抑制剂组荧光强度显著高于 pGL4+HNF4γ mRNA 3'-UTR+miR-23b-3p 模拟物 组。以上结果表明 HNF4γ 可作为 miR-23b-3p 的靶 基因,证实了生物信息学的预测结果(图 2)。

图 2. 荧光素酶基因报告系统进行 miR-23b-3p 靶基因验证 (n=3) A为pGL4+HNF4γ mRNA 3'-UTR 组;B为pGL4+HNF4γ mRNA 3'-UTR+miR-23b-3p 模拟物组;C为pGL4+HNF4γ mRNA 3'-UTR+miR-23b-3p 模拟物+miR-23b-3p 抑制剂组。a为P<0.05。 Figure 2. Target gene validation of miR-23b-3p by luciferase

gene report system (n=3)

2.3 胆酸降 ApoA 表达的剂量与时间效用

使用 0、0.5、2、8、32 mg/L 的胆酸作用 24 h, HepG2 细胞 ApoA 表达水平随胆酸浓度的增加而下 降,但 0.5 mg/L 胆酸与对照组比较差异不显著,其 他各浓度组与对照组比较差异显著,以 32 mg/L 的 作用最明显,其 ApoA 表达水平下降 4 倍(图 3)。 而且胆酸对 HepG2 细胞 ApoA 的表达水平具有明显 的时间效用,6 h 就具有显著降 ApoA 效用(P< 0.05),随时间延长,胆酸降 ApoA 效用越明显,24 h 为最大降 ApoA 效用的时间点,48 h 降 ApoA 效用有 所回落,其后有上移的趋势,但与24 h比较无显著性 差异(图 4)。故后面的实验选择胆酸浓度为 32 mg/L,作用时间为 24 h。

2.4 胆酸抑制 ApoA 表达与 MAPK 和 miR-23b-3p 有关

使用 MAPK 拮抗剂 SB203580 后,胆酸下调 ApoA 蛋白表达能力显著下降,加入 anti-miR-23b-3p 结果与加入 SB203580 的趋势相同,两者 ApoA 蛋白 表达水平均显著高于胆酸组(P<0.05)。HepG2 细 胞对照组、HepG2 细胞+32 mg/L 胆酸+SB203580 组、HepG2 细胞+32 mg/L 胆酸+anti-miR-23b-3p 组 之间差异没有显著性(P>0.05;图 5)。

图 3. 不同剂量胆酸对 HepG2 细胞 ApoA 表达的影响(n= 3) a为 P<0.05,b为P<0.01,与0 mg/L 胆酸组比较。 Figure 3. Effect of different doses of bile acid on ApoA expression in HepG2 cells (n=3)

图 4. 胆酸降 ApoA 表达的时间效用(*n*=3) a 为*P*<0.05,b 为*P*<0.01,与0h组比较。

Figure 4. Time effect of bile acid on ApoA expression (n=3)

图 5. 胆酸抑制 ApoA 表达与 MAPK 和 miR-23b-3p 有关(n =3) 1为 HepG2 细胞对照组,2为 32 mg/L 胆酸作用 24 h 组,3 为 10 mg/L SB203580 组,4为 anti-miR-23b-3p 转染组。a 为 P<0.05, 与 32 mg/L 胆酸作用 24 h 组比较。

Figure 5. The bile acid suppressing ApoA expression is related to MAPK and miR-23b-3p (n=3)

2.5 胆酸活化 MAPK 并上调 miR-23b-3p 表达

2.5.1 胆酸活化 MAPK 加入胆酸后,MAPK 的 磷酸化水平显著增强,其与对照组比较有显著性差 异(P<0.01), 而加入 FXR 特异性拮抗剂 GS 后, MAPK 的磷酸化水平显著下降, 与胆酸组比较有显 著性差异(P<0.05);但HepG2细胞+GS组显著低于 HepG2 细胞+32 mg/L 胆酸+GS 组(P<0.05), 而与 对照组比较也有显著差异(P<0.05);这其一可能是 HepG2 细胞中 MAPK 存在一定的基础磷酸化水平, 而这种基础磷酸化水平与 FXR 有一定的关系;其二 可能是 MAPK 的磷酸化不单受 FXR 的调控,还受其 他因子的调控,故单独抑制 FXR 不足以把 MAPK 的 磷酸化水平下调到基础水平,两者相比较,HepG2 细胞+32 mg/L 胆酸+GS 组的磷酸化水平显著高于 HepG2 细胞对照组(P<0.05), HepG2 细胞+GS 组也 显著高于 HepG2 细胞对照组(P<0.05;图6)。

图 6. 胆酸活化 MAPK(*n*=3) 1为 HepG2 细胞对照组,2为 HepG2 细胞+胆酸组,3为 HepG2 细胞+GS 组,4为 HepG2 细胞+胆酸+GS 组。a 为 *P*<0.05,b 为 *P*<0.01,与 HepG2 细胞对照组比较。 Figure 6. MAPK activation by bile acid(*n*=3)

2.5.2 胆酸上调 miR-23b-3p 表达与 FXR 及 MAPK 有关 加入胆酸后,miR-23b-3p 的转录水平显著 上调(P<0.01),而在加入 MAPK 拮抗剂 SB203580、 FXR 拮抗剂 GS 进行干预后,miR-23b-3p 表达水平 显著回落,其中加入 MAPK 拮抗剂 SB203580 回落 不如 FXR 拮抗剂 GS 幅度大,后者可回落至对照组 水平(与对照组相比,差异不显著,P>0.05),而加入 MAPK 拮抗剂 SB203580 回落幅度有限,其miR-23b-3p 表达水平仍然显著高于除胆酸组外的其他各组 (P<0.01;图 7);这可能因为 miR-23b-3p 的转录表 达不单受到 MAPK 的调控,还可能受到其他因子的 影响,而 FXR 可能在 miR-23b-3p 的转录表达中发 挥主要作用,故抑制 FXR 能很大程度上抑制 miR-23b-3p 的转录表达水平。

图 7. 胆酸上调 miR-23b-3p 表达与 FXR 及 MAPK 有关(*n*=3) 1为 HepG2 细胞对照组, 2为 HepG2 细胞+胆酸组, 3为 HepG2 细胞+胆酸+GS 组, 4为 HepG2 细胞+胆酸+SB203580 组, 5为 HepG2 细胞+GS 组, 6为 HepG2 细胞+SB203580 组。a为 *P*<0.01, 与 其他各组比较。

Figure 7. Bile acid regulating miR-23b-3p expression is related to MAPK and FXR (n=3)

3 讨 论

Lp(a)水平主要受 LPA 基因控制,药物和食物 对其作用不大,全基因组关联分析 (genome-wide linkage and association studies, GWA) 表明 Lp(a) 的 血浆水平主要与 6 号染色体(6q27) LPA 的基因座 有关^[4],虽然现有的 GWA 分析由于方法和条件的 局限性未找到影响 Lp(a) 血浆水平的基因座, 但 ApoA 在转录水平受其他基因调控,这一点反过来 支持存在其他基因座影响 ApoA 表达水平的可能 性,因此也重新激起科研人员从转录水平降 Lp(a) 的兴趣。HNF 家族包括 HNF1、HNF3、HNF4、HNF6 等,HNF4 包括 HNF4α、HNF4β、HNF4γ(即 HNF4G) 3 种类型,其中, HNF4α 和 HNF4γ 具有 70% 的同源 性。研究表明 FXR、HNF1α、HNF4α 等肝脏中富集 的转录因子均参与 ApoA 基因转录的调控^[5-7]。此 外,大量的研究已阐明胆汁酸、烟碱、雌激素、成纤 维细胞生长因子 19 等可以通过影响 ApoA 基因的 表达从而下调血浆中脂蛋白(a)的水平,其机制主 要是通过调控 ApoA 基因的转录来实现^[8-10]。

微小 RNA 作为一种内源性的对基因表达的调 控工具已被公认,本研究首次把它运用到 LPA 的表 达调控,结果表明 LPA 基因受到 miR-23b-3p 的有 效调控,但 miR-23b-3p 并不是直接作用于 LPA 基 因本身,而是间接作用于调控 LPA 基因表达的转录 因子 HNF4,HNF4 可与 LPA 基因启动子上的 DR-1 位点结合,并促进 ApoA 转录,这种作用可被激活的 FXR 所抵消^[5]。最近研究发现,当胆酸激活 FXR 时,FXR 下游的靶基因 SHR 可被激活,其可以与 HNF4 启动子区域相应的结合位点相结合从而抑制 HNF4 表达^[11]。这意味着 FXR 激活可以通过 SHR 间接抑制 HNF4,从而抑制 HNF4 对 ApoA 表达的促 进作用。在 FXR 的启动子区域也存在 HNF4 的结 合位点,HNF4 也可以通过与这位点结合抑制 FXR 表达。FXR 可从 3 个方面与 HNF4 对抗,其一是与 HNF4 竞争 LPA 启动子的 DR-1 位点,其二是通过 FXR 下游靶基因 SHR 抑制 HNF4,其三则是本研究 所发现的,FXR 可以激活 MAPK,活化的 MAPK 可 结合于9号染色体 miR-23b-3p 基因的启动子上游, 促进 miR-23b-3p 表达,作用于其靶基因 HNF4γ,抑 制其蛋白表达,从而减少了 HNF4γ 的量;通过以上 3条途径产生明显的抑制 ApoA 效用。胆酸通过 FXR/MAPK/miR-23b-3p/HNF4y 下调 ApoA 表达, 这一发现丰富了胆酸下调 ApoA 表达的分子机制。

[参考文献]

- [1] Langer C, Tambyrayah B, Thedieck S, et al. Testing for lipoprotein(a) concentration and apolipoprotein(a) phenotypes: Method standardization and pediatric reference values[J]. Semin Thromb Hemost, 2011, 37(7): 810-813.
- [2] Merki E, Graham MJ, Mullick AE, et al. Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein (a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein (a) transgenic mice[J]. Circulation, 2008, 118(7): 743-753.
- [3] Koornneef A, Maczuga P, van Logtenstein R, et al. Apolipoprotein B knockdown by AAV-delivered shRNA lowers plasma cholesterol in mice[J]. Mol Ther, 2011, 19(4): 731-740.
- [4] Zabaneh D, Kumari M, Sandhu M, et al. Meta analysis of candidate gene variants outside the LPA locus with Lp(a) plasma levels in 14500 participants of six White European cohorts[J]. Atherosclerosis, 2011, 217(2): 447-451.
- [5] Chennamsetty I, Claudel T, Kostner KM, et al. Farnesoid X receptor represses hepatic human APOA gene expression [J]. J Clin Invest, 2011, 121 (9): 3 724-734.
- [6] Puckey LH, Knight BL. Sequence and functional changes in a putative enhancer region upstream of the apolipoprotein(a) gene[J]. Atherosclerosis, 2003, 166(1): 119-127.
- [7] Hixson JE, Jett C, Birnbaum S. Identification of promoter sequences in the 5st untranslated region of the baboon apolipoprotein(a) gene[J]. J Lipid Res, 1996, 37(11): 2 324-331.
- [8] Chennamsetty I, Claudel T, Kostner KM, et al. FGF19 signaling cascade suppresses APOA gene expression[J]. Arterioscler Thromb Vasc Biol, 2012, 32 (5): 1 220-227.
- [9] Chennamsetty I, Kostner KM, Claudel T, et al. Nicotinic acid inhibits hepatic APOA gene expression: studies in humans and in transgenic mice[J]. J Lipid Res, 2012, 53(11): 2 405-412.
- [10] Puckey LH, Knight BL. Interaction of oestrogen and peroxisome proliferatoractivated receptors with apolipoprotein(a) gene enhancers[J]. Biochem J, 2002, 366(Pt 1): 157-163.
- [11] Gonzalez FJ. Regulation of hepatocyte nuclear factor 4 alpha-mediated transcription[J]. Drug Metab Pharmacokinet, 2008, 23(1): 2-7.
- (此文编辑 曾学清)